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Introduction Ice Models

We seek to quantify future changes of sea level along the Eastern Below are maps of ice thickness for the best fitting input NAIS

coast of North America with particular emphasis on heavily populated model from the study of Tarasov et. al.l¥! as well as ICE5G!! of

areas. There are several processes that will contribute to the sea Peltier, presented at 2| ka BP. In this study only the North American

level signal and each needs to be considered in order to produce component model is varied, surface ice over the rest of the Earth is
accurate projections!'. The primary component signals are: changes provided by ICESG. :
in sea surface height due to ocean steric changes and the associated 60 80 M0 RO 200 1o 100

dynamic signal, changes in relative sea level due to melting of land ice
(ice caps, glaciers and ice sheets), changes in relative sea level due to
glacial isostatic adjustment (GIA) associated, mainly, with the melting
of the now absent North American ice sheet (NAIS). This poster
focuses improving estimates of the latter while including the signal of
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There are two key model inputs for the GIA model: Earth rh eology Figure 6: Map of Randolph Glacier Inventory!®! outlines, subdivided into their individual groupings
. . . . . o as provided. Glacier outlines were used to approximate ice volume for sea-level fingerprinting.
and density model and an ice history model. The latter is described 40
in the section “lce Models”. The Earth model includes density and
. . . . . 30°
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structure is defined by three parameters which are varied over a
wide range (Fig. |).These parameters are:lithosphere thickness (high
viscosity region), upper mantle viscosity (base of lithosphere to 660
km), lower mantle viscosity (660 to Core-Mantle boundary). We
compute RSL using the theory and algorithm described in Mitrovica
and Milnel®! and Kendall et. al'l. We compare modelled RSL values
to observations from the database of Engelhart and HortonP!. The
quality of the data-model fit for a selection of model parameters in
shown in Figure 2. The Engelhart and Horton!®! database contains
approximately 500 index points distributed between Maine and
Southern Carolina (Figure 5). In total we considered over 360 Earth
models and 35 ice models to give more than 12000 model runs.
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0.0 ' ’ 0.0 & Figure 3: Plots of input ice thickness for a model of Tarasov and ICE5G!”! of Peltier at 21ka BP. Only
' ' the North American ice sheet is varied between models. All other ice sheets (e.g. Greenland) are as
0.1 u 0.1 defined in ICE5G7.
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Figure 8: Maximum and minimum sea-level contributions at 2100 from steric changes, ice melting
and GIA for four largely populated cities along the East Coast of the United States.®l10l11121 Maximum
bars are composed of the maximum value of the dataset for each component while minimum bars are
composed of the minimum value of the dataset for each component.

Sea-Level At 2100

In order to obtain values for sea-level change at 2100 we investigated
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Figure 1: Phase space plots showing the quality of fit as a function of upper and lower mantle
viscosity, lithosphere thickness and ice model. Results for the three best fitting NAIS models of
Tarasov et. al'® are shown as well as those for ICE5G.
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in this investigation.

Conclusions

Our results indicate that high viscosity values for the upper and lower
mantle best fit the RSL history provided by the study of Engelhart
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However, when comparing to data and model as RSL curves (Fig. 2) the model is run for a location ranges from ~7% to ~31% for the locations considered in Fig.8.
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